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Abstract. Conventional Pt/Al2O3 catalysts prepared by wet-impregnation are composed of Pt nanoparti-
cles exposing convex and facetted surfaces deposited on high-surface area γ-Al2O3 supports. A hexagonal
phase mesoporous Pt material (denoted H1-Pt) prepared by chemical reduction in the aqueous domains
of a lyotropic liquid crystalline template exposes however mainly a concave surface with expected dif-
ferent catalytic properties. A series of Pt/Al2O3 catalysts were prepared using H1-Pt, Pt-black or wet-
impregnated Pt, and the samples were characterized by SEM-EDX and TEM, and finally evaluated for
CO oxidation. The H1-Pt/Al2O3 catalyst showed an ignition profile for CO oxidation at lower tempera-
tures and thus appeared less sensitive to CO poisoning than the two other types of samples. This difference
may be related to the differences in surface curvature.

PACS. 81.07.-b Nanoscale materials and structures: fabrication and characterization – 81.16.-c Methods
of nanofabrication and processing – 82.33.Ln Reactions in sol gels, aerogels, porous media

1 Introduction

Oxidation catalysts typically consist of nanoparticles of Pt
deposited on a high-surface area support such as γ-Al2O3.
These deposited particles expose convex and facetted sur-
faces. In contrast, Pt can be prepared in the form of an
ordered mesoporous structure using liquid crystalline tem-
plates [1]. In such materials the surfaces inside the pores
are concave [2]. For structure sensitive reactions the ac-
tivity and/or selectivity vary with the surface structure
of the active phase [3]. It is thus of interest to com-
pare the catalytic performance of mesoporous hexago-
nal platinum (H1-Pt) to that of more conventionally pre-
pared Pt nanoparticles. An interesting reaction for such
an evaluation is the important CO oxidation reaction,
which is known to be self-inhibited by CO at low temper-
atures before ignition. Different surface structures of plat-
inum are expected to exhibit different sensitivity towards
CO poisoning.

2 Experimental

Ordered mesoporous hexagonal platinum (H1-Pt) was pre-
pared by mixing an aqueous solution of hydrogen hex-
achloroplatinate hydrate (Aldrich) and the nonionic sur-
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factant Brij76 (Aldrich) forming a lyotropic liquid crystal.
The liquid crystalline phase was spread onto a steel sheet
upon which the precursor of the mesoporous platinum was
reduced following the method by Attard et al. [1]. The
product was washed with water, ethanol and finally ace-
tone before drying at 90 ◦C for 12 h producing the H1-Pt
powder. The desired amount of H1-Pt powder was mixed
with 5.0 g alumina washcoat slurry and was subsequently
ultrasonicated for 10 min. The alumina washcoat slurry
was taken from a batch containing 8.0 g γ-Al2O3 powder
(Puralox SBa 200, Sasol Germany GmbH), 2.0 g boehmite
powder (Disperal S, Sasol Germany GmbH), 0.3 wt-% of
the solid content polyacryl acid (Dolapix PC21), 67.5 g
distilled water and 22.5 g ethanol (+99.5%, Kemetyl). The
H1-Pt/Al2O3 slurry thus formed was deposited, using an
air brush, on a stainless steel alloy sheet substrate (shaped
as circular discs with a thickness of 0.03 mm and a diame-
ter of 7 mm) suitable for use in a high-throughput screen-
ing reactor as previously described [4,5]. The discs used
for catalyst preparation had been treated with acetone
and subsequently calcined in air at 1000 ◦C for one day
prior to catalyst deposition. This ensured formation of an
oxide surface enabling good adhesion for the washcoat.

For comparison a commercial poly-agglomerated poly-
disperse platinum powder (Pt-black) (Johnson Matthey)
was treated using same procedure for preparation of a
Pt-black/Al2O3 catalyst. A third Pt/Al2O3 catalyst was
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Table 1. Elemental composition of the Pt/Al2O3 catalysts studied as determined by SEM-EDX.

Catalyst Washcoat Pt / Al / O Pt-loading Pt surface area

(mg) (wt-%) (mg) (m2/g)

H1-Pt 1.81 28 / 30 / 42 0.50 34.9

Pt-black 1.78 22 / 34 / 44 0.39 34.2

Wet-imp. 2.25 20 / 37 / 43 0.46 -

Table 2. Turn-over frequency (TOF) of the Pt/Al2O3 catalysts.

H1-Pt Pt-black

Temperature TOF CO conversion TOF CO conversion

(◦C) [mmole/(s m2 Pt)] (%) [mmole/(s m2 Pt)] (%)

140 0.155 10 0.014 0.70%

141 0.233 15 0.018 0.90%

143 0.310 20 0.030 1.50%

146 0.388 25 0.035 1.70%

Fig. 1. TEM image of the ordered mesoporous H1-platinum
phase used in the catalytic reactor study.

prepared by wet-impregnating an Al2O3 washcoated sub-
strate disc with a Pt salt solution. In this case ca. 2 mg
Al2O3 washcoat was deposited on the disc using an air
brush, after which the disc was calcined in air at 600 ◦C
for 1 h. Then, a 0.01 M platinum nitrate water solution
was used to “wet”-impregnate the washcoated substrate
using a micropipette. This procedure was performed on a
magnetic heater and the disc was kept at around 200 ◦C.
In all cases used, the air brush nozzle pressure was ap-
proximately 2 bars and the temperature of the heater was
set to 200 ◦C. All catalyst samples were finally calcined
in air at 250 ◦C for 30 min.

The catalytic conversion of CO to CO2 was studied
within the temperature range of 50−250 ◦C. The total gas
flow used in the reactor was 20 ml/min. and the feed was
composed by 2000 vol-ppm CO and 20 vol-% O2,balanced
with argon. The temperature was linearly increased at a
rate of 8 ◦C/min.

3 Results and discussion

Figure 1 shows a TEM micrograph of the platinum sample
prepared using the liquid crystal template route. The sam-
ple exhibits a hexagonally ordered arrangement of meso-

Fig. 2. The catalytic conversion of CO to CO2 as a func-
tion of temperature comparing the H1-Pt/Al2O3 (∆) with
wet-impregnated Pt/Al2O3 (�) and Pt-black/Al2O3 (©). The
heating rate was 8 ◦C/min. The feed consisted of 20 vol-% O2

and 2000 vol-ppm CO balanced with Ar.

pores in accordance with the H1-Pt phase previously re-
ported by Attard et al. [1]. The total amount of deposited
washcoat and the concentration of platinum in the differ-
ent catalysts prepared as determined by SEM-EDX are
given in Table 1 and were used to obtain the overall plat-
inum loading for each of the catalysts.

The platinum loading was 45 mg Pt ±13% in the sam-
ples compared, as given in Table 1.

In Figure 2 the conversion profiles for CO oxidation to
CO2 over the three different catalysts show that ignition
occurs at lowest temperature for the H1-Pt sample.

In order to compare the catalytic activity of the sam-
ples prepared, the turn-over frequencies (TOF) expressed
as conversion rates for CO oxidation normalized per Pt
surface area were calculated for the H1-Pt and Pt-black
samples and the results are presented in Table 2 for the
early part of the ignition profiles. Due to the different
preparation route it was not possible to calculate the cor-
responding TOF for the wet-impregnated Pt/Al2O3 cat-
alyst sample.



A. Saramat et al.: Differences in catalytic properties between mesoporous and nanoparticulate platinum 211

At low conversions the reaction rate is determined by
the kinetics of the surface reaction. The reaction rate nor-
malized with the platinum surface area shows that the
CO oxidation proceeds considerably faster for the H1-Pt
sample than for the Pt-black sample during these condi-
tions. This finding indicates that H1-Pt is less sensitive
towards CO poisoning during the ignition phase.
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